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1. Introduction

We are concerned with solutions of dynamic optimization problems of the form

V (x) � sup
X�1
t�0

r tU (xt, xt�1)

s:t: (xt, xt�1) 2 Ù, t 2 f0, 1, 2, . . .g, x0 � x,

where r 2 (0, 1) is the discount factor, X � R is a compact interval, Ù � X 3 X is a
closed and convex transition possibility set, U : Ù 7! R is a continuous and concave
utility function and x 2 X is the initial state of the system. Models of this form arise in
many different areas of economics, notably in optimal growth theory (see Stokey and
Lucas, 1989, and McKenzie, 1986). It is well known that the optimal paths of this
problem (starting at any initial state x) are characterized by a continuous function h
which maps the state at time t, xt, to its unique optimal successor state xt�1 � h(xt).
Mitra and Sorger (1999) have recently characterized the set of pairs (h, V ) which can
be the optimal policy function and optimal value function of a problem (Ù, U , r)
satisfying the standard convexity and continuity assumptions. In the present note, we
apply these characterization results in order to:

· investigate the possibility that optimal policy functions are in®nitely steep;
· demonstrate that topological chaos is a robust phenomenon in the class of

optimization models under consideration even under arbitrary mild discounting; and
· derive exact discount factor restrictions under which two of the most popular

examples of chaotic dynamics, the logistic map and the tent map, can be the
optimal policy functions of such a model.

All of these issues have already been dealt with in the literature, as will be brie¯y
summarized below. The contribution of the present note is that we use a novel approach
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for analysing these questions which allows us to derive either more complete answers,
or the already known answers in a different way.

Many policy functions arising from the one-sector neoclassical model (in which
X � [0, x]) violate Lipschitz continuity at x � 0. Mitra and Sorger (1999) present an
example in which the optimal policy function has slope ÿ1 at an interior ®xed point.
On the other hand, it has been noted by a number of authors that an optimal policy
function cannot have the slope �1 at an interior ®xed point (see e.g. Hewage and
Neumann, 1990; Mitra, 1996; or Sorger, 1995). We derive this result as an application
of the characterization results from Mitra and Sorger (1999). Moreover, we prove by
an example that one cannot rule out that an optimal policy function has slope �1 at
an interior point that is not a ®xed point.

The possibility of chaotic dynamics in models of the form described above has been
known since Boldrin and Montrucchio (1986) and Deneckere and Pelikan (1986). In
the examples that they used to demonstrate this result, the discount factors were
chosen extremely small (close to 1=100), which led some researchers to believe that
chaos is not after all possible for `̀ reasonable'' parameter values. This conjecture was
proved wrong by Nishimura et al. (1994) and Nishimura and Yano (1995), who
demonstrated that chaotic optimal solutions can be found in this class of models even
when the discount factor is chosen arbitrarily close to 1. Nishimura et al. (1998)
provided an alternative proof of the same result which does not rely on boundary
solutions. All of these studies have used parametric examples to make their point, and
robustness of optimal chaos has been demonstrated by showing that the construction
has the desired properties for an open set of parameter values.

In the present paper we derive the existence of chaotic dynamics in optimal growth
models as a straightforward implication of the fact (proved in Mitra and Sorger, 1999)
that every Lipschitz continuous function with Lipschitz constant L can be an optimal
policy function, provided the discount factor is smaller than 1=L2. We then show in a
general setting that the optimal policy function depends continuously on the utility
function and the discount factor. Together with the lower semi-continuity of
topological entropy, this establishes the robustness of optimal chaos without the need
for a parametrization.

One example that has been considered by many contributors to the literature on the
optimality of chaos is the logistic map h(x) � 4x(1ÿ x) de®ned on the unit interval. It
is one of the standard examples of chaotic dynamics. Both Boldrin and Montrucchio
(1986) and Deneckere and Pelikan (1986), for example, used this map to prove their
results. (As mentioned above, the discount factors had to be chosen close to 1=100.)
Various upper bounds for the set of discount factors that are consistent with the
optimality of the logistic map were derived in Mitra (1996), Montrucchio (1994) and
Sorger (1992a,b). In particular, Montrucchio (1994) proved that the logistic map
cannot be optimal for discount factors larger than 1=16 if the optimization problem
satis®es a certain regularity assumption. In Section 5 we strengthen this result and
show that the logistic map can be the optimal policy function of a regular dynamic
optimization problem if and only if the discount factor does not exceed 1=16.

Another standard example of chaotic dynamics is the tent map h(x) � 1ÿ j2xÿ 1j
(also de®ned on the unit interval). In contrast to the logistic map, the tent map is not
differentiable, so that the approach of Boldrin and Montrucchio (1986) cannot be used
to rationalize it. In Sorger (1992b), however, it was shown that the tent map can be
rationalized for discount factors smaller than 1=4; and in Sorger (1994) it was proved
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that it cannot be rationalized by any dynamic optimization problem with a discount
factor greater than or equal to 1=

���
6
p

. In the present paper we improve these results by
showing that the tent map can be rationalized if and only if r < 1=4.

The paper is organized as follows. Section 2 formulates the dynamic optimization
problem under consideration and states the assumptions. Section 3 states and discusses
the characterization results from Mitra and Sorger (1999) that are the basis of the
present note; it contains a result as well as an example concerning the possibility of
in®nitely steep optimal policy functions. Section 4 deals with the robustness of
topological chaos under mild discounting, and Section 5 presents exact discount factor
restrictions for the optimality of the logistic map and the tent map.

2. Dynamic optimization problems

Time is measured in discrete periods t 2 f0, 1, 2, . . .g. At each time t the state of the
economic system is described by a vector xt 2 X where the state space X � R is a
compact interval with non-empty interior. The problem under consideration is to
maximize X�1

t�0

r tU (xt, xt�1) (1)

over the set of all sequences (xt)
�1
t�0 satisfying the constraints

(xt, xt�1) 2 Ù, t 2 f0, 1, 2, . . .g, (2)

x0 � x: (3)

The notation has the following interpretation: r is the discount factor, U is the utility
function, Ù is the constraint set and x 2 X is the initial state. The following
assumptions will be used in this paper.

A1. Ù � X 3 X is a closed and convex set such that the x-section Ùx �
fy 2 X j(x, y) 2 Ùg is non-empty for all x 2 X and the set

S
x2XÙx has non-

empty interior.
A2. U : Ù 7! R is a continuous and concave function.
A3. r 2 (0, 1).

We shall refer to the dynamic optimization problem (1)±(3) as problem (Ù, U , r).
Note that we do not include the initial state x in the description of the problem. Thus,
problem (Ù, U , r) requires ®nding the optimal state trajectories from any initial state
x 2 X . Assumptions A1±A3 are standard assumptions in the relevant literature, and
they imply that the Bellman equation,

V (x) � maxfU (x, y)� rV (y)jy 2 Ùxg,
holds for all x 2 X . Moreover, a path (xt)

�1
t�0 satisfying (2) and (3) is optimal if and

only if V (xt) � U (xt, xt�1)� rV (xt�1) holds for all t 2 f0, 1, 2, . . .g. In general,
optimal paths for (1)±(3) need not be unique. To ensure uniqueness, one has to add
strict concavity.

A4. The optimal value function V is strictly concave.
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If A1±A4 hold, then the following is true. For every x 2 X, there exists exactly one
y 2 Ùx such that V (x) � U (x, y)� rV (y). In other words, there exists a unique
maximizer on the right-hand side of the Bellman equation. Let h(x) denote this
maximizer; that is,

h(x) � argmaxfU (x, y)� rV (y)jy 2 Ùxg:
The function h : X 7! X de®ned in that way is called the optimal policy function of the
optimization problem (Ù, U , r). It maps any state x 2 X to its optimal successor state
h(x). Optimal paths are uniquely determined as the trajectories of the difference
equation xt�1 � h(xt) with (3) as the initial condition.

Some of our results involve a concavity assumption that is based on the notion of
á-concavity and á-convexity. If á is any real number, then V is á-concave if
x 7! V (x)� (á=2)kxk2 is a concave function. Analogously, we say that V is á-convex
if x 7! V (x)ÿ (á=2)kxk2 is convex.

A5. There exist positive real numbers á and â such that V is á-concave and (ÿâ)-
convex.

It is obvious that this assumption is stronger than A4. We call an optimization
problem (Ù, U , r) regular if it satis®es A1±A5.

In many cases (especially in optimal growth theory) the optimization problem
(Ù, U , r) is also assumed to satisfy the following monotonicity assumption.

A6. If x < x then Ùx � Ùx. The function x 7! U (x, y) is non-decreasing and the
function y 7! U (x, y) is non-increasing.

It is known that an optimization problem (Ù, U , r) that satis®es A1±A4 and A6
has a non-decreasing optimal value function V (see e.g. Stokey and Lucas, 1989,
Theorem 4.7).

3. The characterization results

The main result from Mitra and Sorger (1999), specialized to a one-dimensional state
space, is stated in the following proposition.

Proposition 1. Let h : X 7! X and V : X 7! R be two given functions.
(i) If there exists a dynamic optimization problem (Ù, U , r) on X such that
Assumptions A1±A4 hold and such that h is the optimal policy function and V the
optimal value function, then the following is true: h and V are continuous; V is strictly
concave; and, for all x 2 X such that @V (x) 6� Æ and all px 2 @V (x), there exists
qx 2 @V (h(x)) such that

V (h(x))ÿ V (h(y))� qx[h(y)ÿ h(x)] < (1=r)[V (x)ÿ V (y)� px(yÿ x)] (4)

holds for all y 2 X .
(ii) There exists a dynamic optimization problem (Ù, U , r) on X such that A1±A4 hold
and such that h is the optimal policy function and V the optimal value function,
provided that the following is true: h and V are continuous; V is strictly concave; and,
for every x 2 X, there exist subgradients px 2 @V (x) and qx 2 @V (h(x)) such that (4)
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holds for all y 2 X. If, in addition, V is non-decreasing, then (Ù, U , r) can be chosen
such that A6 holds.

Part (i) of this proposition states a condition that is necessary for the pair (h, V ) to
be the optimal solution of a dynamic optimization problem, whereas part (ii) provides
a suf®cient condition. The only important difference between these two conditions is
that the suf®cient condition requires that V is sub-differentiable also at the two
boundary points of X .1

Remark 1. The statement of the necessary condition in Mitra and Sorger (1999,
Theorem 1) uses a slightly different order of the quanti®ers. It is clear from the proof
in Mitra and Sorger (1999), however, that the version used in Proposition 1(i) above
holds. The statement of the suf®cient condition in Mitra and Sorger (1999, Theorem
2) requires that V can be extended as a concave function to some open set containing
X . In the one-dimensional framework of the present paper, it is easy to check that the
sub-differentiability of V at all x 2 X is equivalent to that requirement.

If V is sub-differentiable at both x and y, then we can reverse the roles of x and y
in (4). Adding (4) to the inequality that is obtained by interchanging x and y in (4),
we obtain

(qx ÿ qy)[h(y)ÿ h(x)] < (1=r)( px ÿ py)(yÿ x): (5)

This is a more symmetric (but weaker) necessary condition for the rationalizability of
the pair (h, V ).

Mitra and Sorger (1999) derive the following important corollary from the above
result.

Proposition 2. Let h : X 7! X be a Lipschitz-continuous function with Lipschitz
constant L. For every r < 1=L2, there exists an optimization problem (Ù, U , r)
satisfying A1±A6 which has h as its optimal policy function.

Proposition 1(i) together with Proposition 2 implies that the set of all functions that
can be optimal policy functions of a problem satisfying A1±A4 is contained in the set
of continuous functions but contains the set of Lipschitz-continuous functions.
Therefore, we have a rather good characterization of this set. Getting a better (or even
complete) characterization of all possible optimal policy functions seems to be a
subtle problem. On the one hand, there are continuous functions which cannot be
optimal policy functions, and on the other, there are optimal policy functions that are
not Lipschitz-continuous. In the remainder of this section we demonstrate these two
properties by applying Proposition 1.

Theorem 1. Assume that h : X 7! X is a continuous function which has the ®xed point
x � h(x) 2 X. Assume that there exists z 2 int X such that x � h(z). If

lim sup
y!x

h(y)ÿ h(x)

yÿ x
� �1, (6)

then h cannot be the optimal policy function of an optimization problem (Ù, U , r)
satisfying A1±A4.

1) Every concave function is automatically sub-differentiable at any point in the interior of its domain.
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Proof. Assumption (6) implies that there exists a sequence (yi)
�1
i�1 such that

limi!�1 yi � x and limi!�1[h(yi)ÿ x]=(yi ÿ x) � �1. From this sequence one can
extract a subsequence (again denoted by (yi)

�1
i�1 ) such that either h(yi) > x holds for

all i or h(yi) < x holds for all i. We consider only the ®rst case; the second one can
be dealt with by an analogous argument.

Assume that h is optimal for (Ù, U , r) and let V be the corresponding optimal
value function. Since z 2 int X , we know that V is sub-differentiable at z. Proposition
1(i) implies that V is also subdifferentiable at x � h(z). Let px � inff pjp 2 @V (x)g,
and let qx be an arbitrary element of @V (x). Therefore, px and qx are subgradients of
V at x � h(x) and

(qx ÿ px)[h(yi)ÿ h(x)] > 0 (7)

for all i.2

De®ne ëi � (yi ÿ x)=[h(yi)ÿ x]. Since limi!�1 1=ëi � �1, we may assume
without loss of generality that ëi 2 (0, 1) for all i. Continuity of h and ëi , 1 imply
that there exists zi such that h(zi) � yi. The de®nition of ëi and strict concavity of V
imply

V (yi) � V [(1ÿ ëi)x� ëi h(yi)] . (1ÿ ëi)V (x)� ëiV (h(yi))

� V (x)ÿ ëi[V (h(x))ÿ V (h(yi))]:

Thus, we have V (h(x))ÿ V (h(yi)) . [V (x)ÿ V (yi)]=ëi and h(x)ÿ h(yi) � (xÿ yi)=ëi.
From these properties and (7), we obtain

V (h(x))ÿ V (h(yi))� qx[h(yi)ÿ h(x)]

� V (h(x))ÿ V (h(yi))� px[h(yi)ÿ h(x)]� (qx ÿ px)[h(yi)ÿ h(x)]

. [V (x)ÿ V (yi)� px(yi ÿ x)]=ëi � (qx ÿ px)[h(yi)ÿ h(x)]

> [V (x)ÿ V (yi)� px(yi ÿ x)]=ëi:

Since limi!�1 ëi � 0, we ®nd that this inequality is a contradiction to (4). This
completes the proof. j

Theorem 1 rules out as an optimal policy function any function that has slope �1
at a ®xed point x which is either in the interior of the state space (this is the case if
z � x in the theorem) or can be reached along a trajectory of h emanating from the
interior of X . For example, the function h(x) � x1=3 de®ned on X � [ÿ1, 1] cannot be
an optimal policy function of any problem (Ù, U , r) that satis®es A1±A4. It is
interesting to note that there are optimal policy functions which have slope ÿ1 at an
interior ®xed point (see Mitra and Sorger, 1999, Example 1). It is well known that
Theorem 1 does not hold if the interiority assumption is not made. The following
example demonstrates that the theorem also fails if x is not a ®xed point.

2) px is a subgradient because the sub-differential @V (x) is compact.
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Example 1

Let X � [x, 2], where x is any non-positive real number, and de®ne the function h by

h(x) � 0 if x < 1,�����������
xÿ 1
p

if x . 1:

�
Note that h is continuous but not Lipschitz-continuous because it has the slope �1 at
the interior point x � 1. We now show that the condition stated in Proposition 1(ii) is
satis®ed for all r 2 (0, 1) provided that V (x) � 32xÿ x4. To this end, ®rst note that V
is continuous, strictly concave and strictly increasing. Moreover, V is continuously
differentiable on all of R such that the subgradients in (4) can be replaced by the usual
derivatives. The term in brackets on the right-hand side of (4) is given by

V (x)ÿ V (y)� V 9(x)(yÿ x) � 3x4 ÿ 4x3 y� y4: (8)

We have to consider four different cases.

Case 1 (x < 1 and y < 1). In this case we have h(x) � h(y) � 0 such that the left-hand
side of (4) equals 0. Thus, (4) holds independently of r.

Case 2 (x < 1 and y . 1). In this case we have h(x) � 0 and h(y) � �����������
yÿ 1
p

< 1. This
yields V (h(x))ÿ V (h(y))� V 9(h(x))[h(y)ÿ h(x)] � (yÿ 1)2. Together with (8), this
shows that (4) is satis®ed provided that r < (3x4 ÿ 4x3 y� y4)=(yÿ 1)2. We claim that
the right-hand side of this inequality is greater than or equal to 1, such that the
inequality holds for all r 2 (0, 1). The claim is true if f (x, y) � 3x4 ÿ 4x3 y
� y4 ÿ (yÿ 1)2 > 0 holds for all x < 1 and y . 1. Since f x(x, y) � 12x2(xÿ y)
, 0, it follows that f (x, y) > f (1, y) � (1ÿ y)2(2� 2y� y2) . 0, and the claim is
proved.

Case 3 (x . 1 and y < 1). In this case we have h(x) � �����������
xÿ 1
p

< 1 and h(y) � 0. This
yields V (h(x))ÿ V (h(y))� V 9(h(x))[h(y)ÿ h(x)] � 3(xÿ 1)2. Together with (8), this
shows that (4) is satis®ed provided that r < (3x4 ÿ 4x3 y� y4)=[3(xÿ 1)2]. As in case
2, it is suf®cient to verify that the right-hand side of this inequality is greater than or
equal to 1. This is true if f (x, y) � 3x4 ÿ 4x3 y� y4 ÿ 3(xÿ 1)2 > 0 holds for all
x . 1 and y < 1. Since f y(x, y) � 4(y3 ÿ x3) , 0, it follows that f (x, y) >
f (x, 1) � (1ÿ x)2(ÿ2� 2x� 3x2) . 0, and the claim is proved.

Case 4 (x . 1 and y . 1). In this case we have h(x) � a � �����������
xÿ 1
p

and h(y) �
b � �����������

yÿ 1
p

. Note that a 2 (0, 1] and b 2 (0, 1] and that x � a2 � 1 and y � b2 � 1.
Substituting this into (8) yields

V (x)ÿ V (y)� V 9(x)(yÿ x) � (aÿ b)2(a� b)2(6� 8a2 � 3a4 � 4b2 � 2a2b2 � b4):

Moreover,

V (h(x))ÿ V (h(y))� V 9(h(x))[h(y)ÿ h(x)] � (aÿ b)2(3a2 � 2ab� b2):

Thus, (4) is satis®ed provided that

r < (a� b)2(6� 8a2 � 3a4 � 4b2 � 2a2b2 � b4)=(3a2 � 2ab� b2):
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Again, we show that the right-hand side of this inequality is greater than or equal to 1.
This is equivalent to

f (a, b) � (a� b)2(6� 8a2 � 3a4 � 4b2 � 2a2b2 � b4)ÿ (3a2 � 2ab� b2) > 0

for all a 2 (0, 1] and b 2 (0, 1]. A simple calculation shows that

f (a, b) � 3a2 � 10ab� 5b2 � (a� b)2(8a2 � 3a4 � 4b2 � 2a2b2 � b4):

Thus, f (a, b) is a sum of positive terms, and the claim is proved.
These results prove that h can be the optimal policy function of a problem

satisfying A1±A4 and A6 for any discount factor r 2 (0, 1). j

4. Robustness of topological chaos under mild discounting

In this section we prove that topological chaos is a robust phenomenon in dynamic
optimization problems satisfying the standard continuity and convexity assumptions
even for discount factors arbitrarily close to 1. We proceed in several steps.

Theorem 2. For every discount factor r 2 (0, 1) there exists an optimization model
(Ù, U , r) satisfying A1±A6 that has an optimal policy function with positive
topological entropy.

Proof. Consider the family of functions hì : [0, 1] 7! [0, 1] de®ned by

hì(x) � ìx for x 2 [0, 1
2
],

ì(1ÿ x) for x 2 (1
2
, 1],

�
where ì is a parameter taking values in the interval (1, 2]. For each ì 2 (1, 2], the
function hì has a tent-shaped graph and it is Lipschitz-continuous with Lipschitz
constant ì. Thus, Proposition 2 shows that, for any discount factor rì 2 (0, 1=ì2], there
exists a dynamic optimization model (Ùì, Uì, rì) such that hì is the optimal policy
function of this model. Since hì has constant slope ì, it follows from Alseda et al.
(1993, Corollary 4.3.13) that the topological entropy of hì is ln ì. 0. Combining these
results, and letting ì converge to 1, the theorem is proved. j

Remark 2. In this paper we use the term `̀ h exhibits topological chaos'' as
synonymous with `̀ h has positive topological entropy''. There is complete agreement
about what is meant by the latter expression (see e.g. Alseda et al., 1993, pp. 188±
190). While there is some disagreement about what is meant by the former expression,
one prevalent use of the term `̀ topological chaos'' is as follows. A continuous
function h : X 7! X is said to exhibit topological chaos if h has a periodic point whose
period is not a power of 2. The principal result connecting this concept of topological
chaos and positive topological entropy is that a continuous function h : X 7! X exhibits
topological chaos if and only if it has positive topological entropy. (See Block and
Coppel, 1992, p. 218, where functions exhibiting topological chaos in the above sense
are referred to simply as `̀ chaotic''.) This result justi®es our use of the two terms
interchangeably.

It should be noted that the proof of Proposition 2 (see Mitra and Sorger, 1999) uses
the transition possibility set Ù � X 3 X . This implies that, in Theorem 2 above, we
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may also assume that Ù � X 3 X . We maintain this assumption for the rest of the
section.

For every positive integer n, let Un : Ù 7! R be a utility function and let rn be
a discount factor. Assume that limn!�1 rn � r and that Un converges uniformly
to U . Moreover, assume that the problems (Ù, U , r) and (Ù, Un, rn),
n 2 f1, 2, . . .g, satisfy A1±A4. Denote by Vn and hn the optimal value function
and the optimal policy function, respectively, of (Ù, Un, rn). Analogously, denote
by V and h the optimal value function and the optimal policy function,
respectively, of (Ù, U , r).

Lemma 1. Under the assumptions mentioned above, it holds that Vn converges
uniformly to V and that hn converges uniformly to h.

Proof. Since U is continuous and Ù is compact, it follows that U is bounded.
Since Un converges uniformly to U , it follows that the sequence (Un)�1n�1 is uniformly
bounded. Therefore we can ®nd real numbers m and M such that m < U (x, y) < M
and m < Un(x, y) < M for all (x, y) 2 Ù and all n 2 f1, 2, . . .g. Without loss of
generality, we may assume that m � 0.

Step 1. We start by proving that Vn converges uniformly to V . Let E. 0 be given.
There exists T > 1 such that

M

1ÿ r
1� r

2

� �T�1

<
E
4
:

Because of the convergence of the sequences (rn)�1n�1 and (Un)�1n�1, we can ®nd an
integer N such that, for all n > N , the following three properties hold:

supfjUn(x, y)ÿ U (x, y)k(x, y) 2 Ùg, E(1ÿ r)=8,

rn < (1� r)=2,

maxfjr t
n ÿ r tkt 2 f1, 2, . . ., Tg < E=(4MT ):

Consider an arbitrary state x 2 X and ®x an arbitrary n > N. Let (xt)
�1
t�0 be an optimal

path from initial state x for (Ù, U , r). Note that this path is also feasible for the model
(Ù, Un, rn). The following chain of inequalities holds because of the above properties:
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Vn(x) >
X�1
t�0

r t
nUn(xt, xt�1)

>
XT

t�0

r t
nUn(xt, xt�1)

�
XT

t�0

(r t
n ÿ r t)Un(xt, xt�1)�

XT

t�0

r tUn(xt, xt�1)

> ÿ(E=4)�
XT

t�0

r tUn(xt, xt�1)

> ÿ(E=4)�
XT

t�0

r tU (xt, xt�1)ÿ (E=8)

.
X�1
t�0

r tU (xt, xt�1)ÿ
X�1

t�T�1

r tU (xt, xt�1)ÿ (E=2)

> V (x)ÿ (E=4)ÿ (E=2)

. V (x)ÿ E:

Using an analogous calculation, one can also show that V (x) . Vn(x)ÿ E. Since both
n > N and x 2 X have been chosen arbitrarily, we have shown that Vn converges
uniformly to V .

Step 2. Now we prove that hn converges uniformly to h. To this end, ®rst note that
h and hn are continuous functions for all n and that X is compact. If hn did not
converge uniformly to h, then, by Royden (1988, p. 162, Exercise 40e), it would be
possible to ®nd x0 2 X, è. 0, and a sequence (xn)�1n�1 such that limn!�1 xn � x0 and
jhn(xn)ÿ h(x0)j > è for all n. By compactness of X , we may assume without loss of
generality that z0 � limn!�1 hn(xn) exists. Since z0 6� h(x0), one can ®nd E. 0 such
that

V (x0) > U (x0, z0)� rV (z0)� E:

Because of uniform convergence of Un to U and Vn to V , convergence of rn to r, as
well as continuity of U and V, one can ®nd an integer N such that, for all n > N and
all x 2 X , the following properties hold:

jVn(x)ÿ V (x)j, E=8,

jV (xn)ÿ V (x0)j, E=8,

jU (xn, hn(xn))ÿ U (x0, z0)j, E=8,
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jV (hn(xn))ÿ V (z0)j, E=8,

jrn ÿ rj, E(1ÿ r)=(8M):

From these conditions, we obtain

Vn(xn) � [Vn(xn)ÿ V (xn)]� [V (xn)ÿ V (x0)]� V (x0)

> ÿ(E=8)ÿ (E=8)� V (x0)

> U (x0, z0)� rV (z0)� (3E=4)

> U (xn, hn(xn))� rV (hn(xn))� (E=2)

� U (xn, hn(xn))� rnV (hn(xn))� (E=2)� (rÿ rn)V (hn(xn))

> U (xn, hn(xn))� rnV (hn(xn))� (3E=8)

> U (xn, hn(xn))� rnVn(hn(xn))� (E=4)

� Vn(xn)� (E=4):

Clearly, this is a contradiction, and the result is proved. j

We are now prepared to prove the second main result of this section. Denote the
space of all dynamic optimization models (Ù, U , r) satisfying assumptions A1±A6
and Ù � X 3 X by M X and de®ne the metric

ä((Ù, U , r), (Ù, U 9, r9)) � maxfjU (x, y)ÿ U 9(x, y)k(x, y) 2 Ùg � jrÿ r9j
on this space.

Theorem 3. Assume that (Ù, U , r) 2M X has an optimal policy function with
positive topological entropy. Then there exists E. 0 such that all models
(Ù, U 9, r9) 2M X with ä((Ù, U , r), (Ù, U 9, r9)) , E have optimal policy functions
with positive topological entropy.

Proof. The result follows at once from Lemma 1 and from the fact that the
topological entropy is a lower semi-continuous function on the space of all continuous
functions of X into itself endowed with the topology of uniform convergence (see
Alseda et al., 1993, Theorem 4.5.2). j

Theorems 2 and 3 together prove our claim that topological chaos is a robust
phenomenon in dynamic optimization models satisfying A1±A6 even under arbitrary
mild discounting.

5. Exact discount factor restrictions

In this section we demonstrate how the results stated in Section 3 can be used to
characterize the set of discount factors that are compatible with the optimality of a
given continuous mapping h : X ! X . We do this by considering two important
examples: the logistic map h(x) � 4x(1ÿ x), and the tent map h(x) � 1ÿ j2xÿ 1j,
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both of which are de®ned on the set X � [0, 1]. These two maps are among the best
known examples of chaotic maps. (For previous studies of the rationalizability of these
functions, we refer to the literature mentioned in the Introduction.)

Theorem 4. Let X � [0, 1] be the state space and r 2 (0, 1) the discount factor, and
de®ne h : X 7! X by h(x) � 4x(1ÿ x). The following two conditions are equivalent:

(i) There exists a transition possibility set Ù and a utility function U such that the
model (Ù, U , r) satis®es A1±A6 and such that h is the optimal policy function of
(Ù, U , r).
(ii) The discount factor satis®es r 2 (0, 1=16].

Proof. (a) Since h is Lipschitz-continuous with Lipschitz constant L � 4, it follows
from Proposition 2 that for any r < 1=16 one can ®nd Ù and U such that (Ù, U , r)
satis®es A1±A6 and has h as its optimal policy function.

(b) Now assume that (Ù, U , r) is given such that A1±A6 are satis®ed and (h, V ) is
the solution of this model. We have to show that r < 1=16. Assume to the contrary
that r. 1=16; then one can ®nd numbers ë 2 (0, 1) and è 2 (1, 1) such that

16ë2r.è: (9)

From A5, it follows that there exist positive numbers á and â such that the optimal
value function V is á-concave and (ÿâ)-convex. Let us choose a suf®ciently large
integer T such that

(â=á)1=(T�1) < è: (10)

Because h is continuously differentiable and h9(0) � 4, we can ®nd E. 0 such that

h9(E) > 4ë: (11)

Now let us de®ne x0 � E=4T�1 and xt�1 � h(xt) for t 2 f0, 1, . . ., Tg. Since
h9(x) 2 (4ë, 4) for all x 2 (0, E), it follows that 0 , x0 , x1 , . . . , xT�1 , E. From
Proposition 1(i), it follows that, for every t 2 f0, 1, . . ., T � 1g, there exists
pt 2 @V (xt) such that, for all y 2 X and all t 2 f0, 1, . . ., Tg,

V (h(xt))ÿ V (h(y))� pt�1[h(y)ÿ h(xt)] < (1=r)[V (xt)ÿ V (y)� pt(yÿ xt)]:

Combining these T � 1 inequalities and choosing y � 0 yields

V (xT�1)ÿ V (0)� pT�1(0ÿ xT�1) < (1=rT�1)[V (x0)ÿ V (0)� p0(0ÿ x0)]:

Since V is á-concave and (ÿâ)-convex, we obtain from this inequality

áx2
T�1 > (â=rT�1)x2

0: (12)

Since h is concave, h(0) � 0, and xt , E for all t 2 f0, 1, . . ., Tg, we get
xt�1 � h(xt) . h9(xt)xt . h9(E)xt. Thus, xT�1 .[h9(E)]T�1x0 > (4ë)T�1x0, by (11). This
inequality can also be written as x2

T�1 > (16ë2)T�1x2
0. Together with (12), this shows

that rT�1(16ë2)T�1 < â=á. Using (10), it follows that 16ë2r < è, which is a
contradiction to (9). This completes the proof. j

The above theorem shows that the logistic map can be an optimal policy function of
a regular optimization problem if and only if the discount factor does not exceed
1=16. We do not know if the logistic map can be rationalized by an optimization
model with a higher discount factor if the regularity assumption A5 is not required.
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The second example that we consider in this section is the tent map
h(x) � 1ÿ j2xÿ 1j. Although this function has properties very similar to the logistic
map, it can be rationalized for a larger set of discount factors.3

Theorem 5. Let X � [0, 1] be the state space and r 2 (0, 1) the discount factor, and
de®ne h : X 7! X by h(x) � 1ÿ j2xÿ 1j. The following two conditions are equivalent:

(i) There exists a transition possibility set Ù and a utility function U such that the
model (Ù, U , r) satis®es A1±A4 and such that h is the optimal policy function of
(Ù, U , r).
(ii) The discount factor satis®es r 2 (0, 1=4].

Proof. (a) Since h is Lipschitz-continuous with Lipschitz constant L � 2, it follows
from Proposition 2 that, for any r < 1=4, one can ®nd Ù and U such that (Ù, U , r)
satis®es A1±A4 and rationalizes h.

(b) Now assume that (Ù, U , r) is given such that A1±A4 are satis®ed and such
that (h, V ) is the solution of this model. We have to show that r < 1=4. To this end
we proceed in four steps. In the ®rst one we show that the optimal value function
must have ®nite one-sided derivatives at all states, in the second and third steps we
derive two different discount factor restrictions, and in the ®nal step we combine the
two restrictions to arrive at the one stated in the theorem.

Step 1. Because 1
2

is in the interior of X , it follows that V is sub-differentiable at 1
2
.

From Proposition 1(i), it follows that V is also sub-differentiable at h(1
2
) � 1. The left-

hand derivative V 9ÿ(1) cannot be ÿ1 because the direction ÿ1 points into X at 1,
and it cannot be �1 because that would violate sub-differentiability of V at 1.
Because V is sub-differentiable at 1, it follows from Proposition 1(i) that V is sub-
differentiable at h(1) � 0. By a similar argument as above, the right-hand derivative
V 9�(0) can be neither ÿ1 nor �1. From these properties and the concavity of V , we
obtain �1. V 9�(0) > V 9ÿ(x) > V 9�(x) > V 9ÿ(1) .ÿ1 for all x 2 (0, 1).

Step 2. Let x and y be arbitrary elements of (0, 1). From Proposition 1(i), it follows
that there exist subgradients px 2 V (x), qx 2 V (h(x)), py 2 V (y) and qy 2 V (h(y))
such that (5) holds. Choose E 2 (0, 1

4
) and let x � 1

2
and y � 1ÿ E. Then h(x) � 1 and

h(y) � 2E. Thus, there are px 2 @V (1
2
), qx 2 @V (1), py 2 @V (1ÿ E) and qy 2 @V (2E)

such that

(qy ÿ qx)(1ÿ 2E) < (1=r)( px ÿ py)[(1
2
)ÿ E]:

From our choice of x and y, we get px < V 9ÿ(1
2
), py > V 9�(1ÿ E), qx < V 9ÿ(1) and

qy > V 9�(2E). Using these facts, we obtain from the above inequality

r <
[(1

2
)ÿ E][V 9ÿ(1

2
)ÿ V 9�(1ÿ E)]

(1ÿ 2E)[V 9�(2E)ÿ V 9ÿ(1)]
:

3) Similarity of the logistic map and the tent map derives from their topological equivalence. Two maps
h1 : X1 7! X1 and h2 : X2 7! X2 are called topologically equivalent if there exists a homeomorphism
f : X1 7! X2 such that f (h1(x)) � h2( f (x)) for all x 2 X1.
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In the limit, as E approaches 0 this yields, because of the continuity properties of one-
sided derivatives, that

r <
V 9ÿ(1

2
)ÿ V 9ÿ(1)

2[V 9�(0)ÿ V 9ÿ(1)]
: (13)

Step 3. Choose E 2 (0, 1
4
) and let x � E and y � (1

2
)ÿ E. Then h(x) � 2E and

h(y) � 1ÿ 2E. As in step 2, it follows from Proposition 1(i) and (5) that there exist
px 2 @V (E), qx 2 @V (2E), py 2 @V ((1

2
)ÿ E) and qy 2 @V (1ÿ 2E) such that

(qx ÿ qy)(1ÿ 4E) < (1=r)( px ÿ py)[(1
2
)ÿ 2E]:

Moreover, we have px < V 9ÿ(E), py > V 9�((1
2
)ÿ E), qx > V 9�(2E) and qy < V 9ÿ(1ÿ 2E).

Together with the above inequality, this yields

r <
[(1

2
)ÿ 2E][V 9ÿ(E)ÿ V 9�((1

2
)ÿ E)]

(1ÿ 4E)[V 9�(2E)ÿ V 9ÿ(1ÿ 2E)]
:

As in step 2, we take the limit as E approaches 0, which yields

r <
V 9�(0)ÿ V 9ÿ(1

2
)

2[V 9�(0)ÿ V 9ÿ(1)]
: (14)

Step 4. De®ne ë � [V 9�(0)ÿ V 9ÿ(1
2
)]=[V 9�(0)ÿ V 9ÿ(1)]. Then we can write (13) and

(14) as r < (1ÿ ë)=2 and r < ë=2, respectively. Thus, we must have r <
(1
2
) minfë, 1ÿ ëg < 1

4
. This completes the proof. j

Theorem 5 provides an exact discount factor restriction for the rationalizability of
the tent map. Note that, in contrast to Theorem 4, the regularity assumption A5 is not
needed for this result. It is clear from the proof, however, that, whenever r < 1

4
, one

can ®nd a model (Ù, U , r) that rationalizes the tent map and satis®es not only
A1±A4, but also A5 and A6.

Final version accepted 14 December 1998.
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